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tt+1t+2

t+N t     t+1    t+2   ……..      t+N   

u(t)

Only the first 
input of the 
sequence is 
applied

Error w.r.t. reference is 
minimized during 
prediction horizon

Constraints System Model 
to predict its 
behavior
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Model Predictive Control
• What is it needed to apply 

MPC?  

• System model available 

•  A cost function that involves 
the controlled and 
manipulated variables 

• Prediction horizon (tuning 
parameter) 

• Additional information to take 
into account: disturbances, 
constraints, delays
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• Irrigation canals are waterways used to deliver 
water to farmers 

• 40% of all the food production comes from 
irrigated lands and 70% of freshwater consumption 
is used in agriculture (F.A.O.)
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• The control objectives in this context are generally: 
1) keeping the water levels at the end of each 

reach at set point 
2) while using as few changes in structure settings 

as possible or as little energy as possible when 
pumping water
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• The behavior of these systems is well 
characterized but complex, e.g.: 
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Partial Differential Saint-Venant Equations 

Mass Balance 

Momentum Balance 

Inertia Convective 
acceleration 

Gravitational 
Force Friction Force 
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• For this reason, it is common to use simpler 
models for control
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We assume that there are constraints on the inputs and the
states of the system, i.e.,

x(k) 2 X u(k) 2 U

The goal of the controller is to minimize the following stage
cost:

`(k) = xT (k)Qx(k) +QT

l

x(k) + uT (k)Ru(k), (2)

where Q 2 Rn

x

⇥n

x , Q
l

2 Rn

x , and R 2 Rn

u

⇥n

u are
constant weighting matrices.

We can describe a water network as a graph G = {V, E},
where V = {1, 2, . . .} is the vertex set, which correspond to
the measurement or actuation positions in the system, and
E ✓ {{i, j}|{i, j} ✓ V, i 6= j} is the set of the edges,
which represent the routes that the operator must follow to
go from one place to another. Notice that for any v 2 V ,
we will denote the corresponding state and input variables
by x

v

and u
v

. A path followed by the operator is defined as
follows. A path p on G is defined as a sequence of ordered
edges of the form (v

n

, v
n+1

), n = {1, . . . , N
s

}, where N
s

is
defined as the sequence horizon, which denotes the number
of elements contained in this sequence. Next, let us define the
set of the possible paths of length N

s

starting at a gate v 2 V ,
which will be denoted as P

v

(N
s

). Notice that P
v

(N
s

) ✓ EN

s

with v
1

= v. Likewise, let us define the path delay function
d(p

v

) : P
v

(N
s

) ! N . This function provides us with the
number of time steps that the operator needs to follow a
given path p

v

that starts at a certain gate v. This function
also takes into account that everytime the operator reaches
a new gate he has to spend T

o

time steps carrying out the
gate change action and taking new measurements.

The predictive controller uses (1) to predict the evolution of
the system during a certain prediction horizon N

p

. Given the
typical long transport delays of the application considered,
it is common to compute the control actions for a shorter
control horizon N

c

and to evaluate their impact during the
larger horizon N

p

. Hence, in this case, N
p

� N
c

.

It is also necessary to take into account that the operator is
not always available to implement control actions: he can be
travelling or taking measurements. Therefore, let us define
the availability function a : P

v

(N
s

)⇥N,! V , which returns
the expected state of the operator k time steps ahead in
the future while he is following the path p

v

. In particular,
a(p

v

, k) = i – where i is the node where the manipulated
variable u

i

(k) can be updated at that time step if the operator
is available and 0 otherwise.

All these elements allow us to formulate the optimization
problem, which is solved by the MoMPC controller in an
event-driven fashion whenever the operator sends a new

measurement obtained at a gate v 2 V1:

min
u(k:k+N

c

),pv

N

pP
l=0

`(k + l)

s.t.
x(l + 1) = Ax(l) +Bu(l) + w(l)
p
v

2 P
v

(N
s

)
u
i

(l) = 0 8a(p
v

, l) 6= i
x(l) 2 X , u(l) 2 U

(3)

where u(k : k+N
c

) = {u(k), u(k+1), . . . , u(k+N
c

)}. Note
that this is a mixed-integer quadratic programming (MIQP)
problem, which has to be solved by the MoMPC to calculate
the optimal path p⇤

v

and its corresponding optimal input
trajectory u⇤(k : k + N

c

). Hence, once (3) is solved, the
operator knows the sequence of gates that he must follow
and the control actions he must implement.

Remark 1: In a standard MPC configuration the input vector
consists of the control vectors of all actuators over the entire
control horizon, e. g.: if there are only three different gates,
then the outcome of the MPC controller would be:

u⇤(k : k +N
c

) = {u⇤
1

(k), u⇤
2

(k), u⇤
3

(k),
u⇤
1

(k + 1), u⇤
2

(k + 1), u⇤
3

(k + 1), . . . ,
u⇤
1

(k +N
c

), u⇤
2

(k +N
c

), u⇤
3

(k +N
c

)}
In MoMPC, the control input vector consists of the control
actions of the actuators along the optimal route of the
operator, e.g: let us assume that the travelling time delay
is 1 time step between consecutive gates, T

o

= 0, N
c

= 4.
Likewise, we also assume that only increments on the input
signal are calculated (i.e., 0 means no changes applied) and
that the optimal route is {1, 2, 3}. In this case, the outcome
of the MoMPC would be:
u⇤(k : k +N

c

) = {u⇤
1

(k), 0, 0, 0, 0, 0,| {z }
travel time

0, u⇤
2

(k + 2), 0,

0, 0, 0,| {z }
travel time

0, 0, u⇤
3

(k +N
c

)}

III. MOBILE MODEL PREDICTIVE CONTROL APPLIED TO
AN IRRIGATION CANAL

MoMPC is tested on a model of an existing large scale
irrigation canal consisting of thirteen canal reaches which
are interconnected by adjustable gates. A schematic layout
of the canal is presented in Fig. 4. The test canal has a total
length of 45 km and a maximum discharge capacity of 157
cubic meters per second (cms) at the head gate. Controllable
undershot gates at the end of each canal reach, except the
last one, can be set to a certain flow in order to keep the
water level at the downstream side of each reach as close as
possible to set-point. There are 71 turnout structures, taking
water to laterals canals, 15 cross-structures such as inverted
siphons and culverts are present in the main canal that are
uncontrollable, but have minor influence on the flows and

1In the particular application considered in this paper, V is composed of
locations in which both measurement and actuation tasks can be carried out.

MPC uses the system model to predict its evolution 
and calculate the optimal inputs along a certain 
horizon according to a given cost function
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20 % step flow change at 
turnouts 
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• However, there are certain issues MPC 
cannot solve…

20
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• We integrate the operator inside the MPC 
controller as a movable sensor/actuator with 
a delay due to traveling times
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• To this end, an MI-QP is solved 
in an event triggered fashion:

22

following the path p

j
v. In particular, aj(pjv, i, k) = 1 if the manipulated variable ui(k) can be

updated at that step k and 0 otherwise. This function must take into account the travel time

between the different locations plus an additional time of T
o

time steps that is employed at each

gate in order to take new measurements and to change the actuator position.

All these elements allow formulating the optimization problem solved by the MoMPC controller,

which has to provide the operator with information regarding the actuation that is needed in its

current location v 2 V and a route of the next locations that he or she has to visit. In particular,

this optimization is triggered in an event-driven fashion after the operator feeds the controller

with measurements of its current location. The optimization problem solved is:

min
u(k:k+N

c

),pjv

N
p

�1P
l=0

`(k + l)

s.t.

x(l + 1) = Ax(l) + Bu(l) + w(l)

p

j
v 2 Pj

v(Ns

)

ui(l) = 0, 8i 2 V , 8l 2 {k, k + 1, . . . , k +N

c

} : a(pjv, i, l) = 0

ui(l) = 0, 8i 2 V , 8l 2 {k, k + 1, . . . , k +N

c

} : a(p̂�j
v , i, l) = 0

x(l) 2 X

u(l) 2 U

(3)

where u(k : k +N

c

) = {u(k), u(k + 1), . . . , u(k +N

c

)}. With a slight abuse of notation, p̂�j
v is

introduced to denote the routes that other operators different from j will follow according to the

current planning, i.e., the MoMPC updates also the values of the actuators that correspond to the

rest of the operators according to the most updated information available. As it can be seen, the
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Manual feedback control with 2 operators
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MoMPC with 2 operators
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Control	configuration WD(%)

Centralized	Control 1.06

2	Human	operators	applying	feedback	control 11.21

Mobile	Canal	Control	with	2	human	operators 1.87
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Example (I)
Water Deficiency Comparison

Maestre, J.M.; van Overloop, P.J.; Hashemy, M.; Sadowska, A.; Camacho, E.F., "Human in the loop model 
Predictive Control: an irrigation canal case study," Decision and Control (CDC), 2014 IEEE 53rd Annual 
Conference on , vol., no., pp.4881,4886, 15-17 Dec. 2014  
 
P.J. van Overloop, J.M. Maestre, A. Sadowska, E. F. Camacho, B. de Schutter. Human-in-the-Loop Model 
Predictive Control of an Irrigation Canal. IEEE Control Systems Magazine 07/2015; 35(4):19-29. 
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Distributed Model Predictive 
Control
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• Many control schemes have been proposed with differences on 

– System decomposition  

– Information available  

– Communicational constraints

Distributed Model Predictive 
Control

27



Negenborn, R.R.; Maestre, J.M., "Distributed Model Predictive Control: An Overview and Roadmap 
of Future Research Opportunities," Control Systems, IEEE , vol.34, no.4, pp.87,97, Aug. 2014 28



• Algorithm 
– In order to make a proposal, each agent calculates the optimal control action for a 

(sub)set of inputs that affect its dynamics

29

Example (II)

Maestre, J. M., De La Pena, D. M., Camacho, E. F., & Alamo, T. (2011). Distributed model predictive control based on 
agent negotiation. Journal of Process Control, 21(5), 685-697.
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ProposalProposal
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?
?

?

?

?

Proposal
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Proposal

JΔ
JΔ

JΔ

JΔ

JΔ
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Result	

(accepted	or	
not)

Result	

(accepted	or	
not)
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Result	

(accepted	or	
not)
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Result 
(accepted or 

not)

Algorithm can be executed in parallel



• Hydro-Power Valley (EDF) 
  
 #8 subsystems 
 #249 states 
 #10 inputs
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Maestre, J. M., Ridao, M. A., Kozma, A., Savorgnan, C., Diehl, M., Doan, M. D., Sadowska, A., Keviczky, T., De 
Schutter, B., Scheu, H., Marquardt, W., Valencia, F., and Espinosa, J. (2015), A comparison of distributed MPC 
schemes on a hydro-power plant benchmark. Optim. Control Appl. Meth., 36, 306–332. 39
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Distributed Model Predictive 
Control

Fallacies of Distributed Computing (1994) 

 1 The network is reliable. 

 2 Latency is zero. 

 3 Bandwidth is infinite. 

 4 The network is secure. 

 5 Topology doesn't change. 

 6 There is one administrator. 

 7 Transport cost is zero. 

 8 The network is homogeneous.



p DMPC based on dual decomposition

■ We have a coupled optimization problem and we would like to solve it in 
a distributed fashion 

■ Can we do this?  

Distributed Model Predictive 
Control

41

J(U)= J1(U)+ J2(U)

min J(U)⇔
?
min J1(U),min J2(U)



p The dual decomposition trick 

■ We use auxiliary variables 

■ But how do we satisfy these new constraints in a distributed 
fashion?

Distributed Model Predictive 
Control

42

min J(U)⇔
?
min J1(U1),min J2(U2)
s.t.
U1 =U2

⎧

⎨
⎪

⎩
⎪



The dual decomposition trick 

■ We use Lagrangian prices 

■ There is an incentive to make U1=U2 to minimize costs 

■ Can we solve this now in a distributed fashion?

Distributed Model Predictive 
Control

43

min
U1 ,U2

J1(U1)+ J2(U2)
s.t.
U1 =U2

⎫

⎬
⎪⎪

⎭
⎪
⎪

⇔max
λ
min
U1 ,U2

J1(U1)+ J2(U2)+λ(U1 −U2)

YES!!!



The dual decomposition trick 

■ At time k, we start with initial prices 
  
■ Each local controller optimizes a local cost function 

■ After local optimization, prices are updated by a coordinator 
following a gradient method in order to reduce the constraint 
violation until convergence is attained

Distributed Model Predictive 
Control

44

λ0(k)

min
U1

J1(U1)+λU1 min
U2

J2(U2)−λU2

λl+1(k)= λl(k)+γ (U1 −U2)



What happens if agent 1 solves a different 
problem? 

■ For example, by using different prices 

■ Or by introducing fake constraints or 
implementing a different control action

Distributed Model Predictive 
Control

45

min
U1

J1(U1)+
λ
α
U1

Velarde, P., Maestre, J. M., Ishii, H., & Negenborn, R. R. Vulnerabilities in Lagrange‐based distributed model 
predictive control. Optimal Control Applications and Methods. In press. [Available on line]



System	Model	

Constraints

S1																																												S2

Objective	Function

Example (III)

P. Velarde. Stochastic Model Predictive Control for Robust Operation of Distribution Systems. PhD thesis, 2017. 
supervised by J. M. Maestre and C. Bordons.  



Standard	DMPC Fake	prices

P. Velarde. Stochastic Model Predictive Control for Robust Operation of Distribution Systems. PhD thesis, 2017. 
supervised by J. M. Maestre and C. Bordons.  

Example (III)



Goal: 
Provide robustness to the subsystems in a 
distributed fashion.

Alternatives: 
• MS-DMPC
• TB-DMPC
• Secure dual decomposition DMPC

Scenario Generation
Noise	was	added	to	the	controllers’	states	xi[k]	at	
each	time	step	considered	in	the	experiments.	

Set	of	collected	scenarios		

MS-DMPC

Distributed Model Predictive 
Control
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MS-MPC Defense Mechanism Running

Example (III)



Outline

• Model Predictive Control 

• Distributed Model Predictive Control  

• Coalitional Model Predictive Control

• Conclusions
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• Typical assumption 

– Coupling does not change with time 

– Consequently neighborhoods are static 

  But does coupling change with 
time?

Coalitional Model Predictive 
Control

51



Neurons Formations Strategies

• It does. Coupling changes with time…

Coalitional Model Predictive 
Control
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• Coalitions are groups of agents with relevant 
coupling at a given period of time 

• Static coalitions already exist in control: 
partitions 

Coalitional Model Predictive 
Control

53



Limited	coupling Strong	coupling

Distributed	control

Continuous	information	exchange	
Interactions	are	handled

Decentralized	control

	No	information	exchange	
Mutual	interactions	are	neglected
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Adapt	to	 
variant	coupling

Coalitional Model Predictive 
Control
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Adapt	to	 
variant	coupling

Coalitional Model Predictive 
Control

Promote	cooperation	only	when	it  
results	in	a	sensible	improvement

56



• We have developed different coalitional 
control algorithms that promote coalitional 
behavior 

• Two approaches:  
• Top-down (Hierarchical) 
• Bottom-up

Coalitional Model Predictive 
Control

57



Section	of	the	Dez	
main	canal	(Iran)

Example (IV)

F. Fele et al., “Coalitional MPC of an irrigation canal”, Journal of Process Control, vol. 24, no. 4, April 2014
58



Objectives:

Regulate	water	levels

Compensate	for	disturbances	represented	by	changes	of	the	offtakes

59Minimize	the	use	of	network	resources

Example (IV)



Improvement	of	performance	through	coalitional	control

?
60

Example (IV)
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Step	decrease	in	
the	offtakes

Step	increase	in	
the	offtakes



Step	decrease	in	
the	offtakes

Step	increase	in	
the	offtakes
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Example (IV)
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Example (V)

F. Fele, J.M. Maestre, Eduardo F. Camacho. Coalitional Control Cooperative Game Theory and 
Control. IEEE Control Systems Magazine 37(1): 53-69, Feb. 2017. 



• 16 interconnected water 
tanks  

  - Only one global      
    source (top-left) 
  - Only one global sink 
    (bottom-right)
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Example (VI)



• Decentralized MPC
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Example (VI)



• Distributed/Centralized MPC
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Example (VI)



• Coalitional MPC
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Example (VI)



Coalitional Model Predictive 
Control

69
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COALITIONAL MPC FOR SYSTEMS OF SYSTEMS 
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Coalitional control
Individual rationality
Bottom-up approach
◦ Game defined over two players
◦ Any pair of individual agents or already existing coalitions can evaluate the 

outcome of a possible merger

The basic requirement to be met is
𝐽1∪2 ≤ 𝐽1 + 𝐽2

Individually rational agents

𝐽1∪2
(𝑖) ≤ 𝐽𝑖

where 𝐽1∪2
(1) + 𝐽1∪2

(2) = 𝐽1∪2, and 𝐽1∪2
(𝑖) is the local cost player 𝑖 incurs by 

participating in the merger.

2/21/2017 COALITIONAL MPC FOR SYSTEMS OF SYSTEMS 
FILIBERTO FELE – UNIVERSIDAD DE SEVILLA 55

Coalitional control
Algorithm

Identify pairs of players

Predict performance 
for each pair of players

Apply unilateral control 
actions

Yes No
Merge

Apply joint control action

𝐽1∪2 ≤ 𝐽1 + 𝐽2

Compute 𝜙1and 𝜙2 and transfer 
benefit so that 𝐽1∪2

(𝑖) + 𝜏𝑇𝑈 = 𝜙𝑖

Remark
• Evolution of overall coalition 

structure is not a deterministic 
process

• Depends on the order any pair 
evaluates a possible merger

F. Fele, E. Debada, J. M. Maestre, E. F. Camacho. Coalitional Control for Self-Organizing Agents. IEEE Transactions on 
Automatic Control. In press. Available online.

Pairwise bargaining with: 
• Closed loop stability 
• Coalitional stability 
• Convergence to the core



Noncooperative	Game	Theory

Rational	
behavior

Conflicting	
interests

Independent	
agents

Objective	
function	
influenced	
by	other	
agents’	
actions

No	
coordina
tion

Cooperative	Game	Theory

Communication

Self-
organizing	
agents

Benefit	
through	

cooperation
Fairness Efficiency

Coalitional Model Predictive 
Control

70



Coalitional Model Predictive 
Control
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• Constraints on Shapley value and closed-loop stability  
 
F. J. Muros, J. M. Maestre, E. Algaba, T. Alamo, Eduardo F. Camacho. Networked Control Design for Coalitional Schemes using Game-
Theoretic Methods. Automatica 78: 320-332, April 2017.  

• Computation of a priori and a posteriori values for agents and links with constraints  
 
F. J. Muros, E. Algaba, J. M. Maestre,  E. F. Camacho. Harsanyi Power Solutions in Coalitional Control Systems. IEEE Transactions on Automatic 
Control 62(7): 3369-3381, 2017.  

• Amalgamation in games and inclusion of constraints with the Banzhaf value  
 
F. J. Muros, E. Algaba, J. M. Maestre, E. F. Camacho. The Banzhaf Value as a Design Tool in Coalitional Control. Systems 
and Control Letters 104: 21-30, June 2017.  

• Application to partitioning and planning problems  
 
F. J. Muros, J. M. Maestre, C. Ocampo, E. Algaba, E. F. Camacho. Partitioning of Large-Scale Systems using Game-
Theoretic Coalitional Methods. Accepted in ECC 2018. 
 
L. A. Fletscher, J. M. Maestre, C. Valencia. Coalitional Planning for Energy Efficiency of HetNets Powered by Hybrid Energy 
Sources. IEEE Transactions on Vehicular Technology. In press. 



Example (VII)
■ AYESA / University of Seville
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• E
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Probability Distribution 
functions (based on real 
data) are used to 
simulate the behavior of 
a bigger EV population

Simulation results to tune the 
macroscopic model

Coalitions among CM

CM2

CM3 CM4

CM1
Aggregated energy consumptions  
are modeled 

Every single EV’s 
driving pattern and 
charging decisions are 
modeled 

Example (VII)
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Example (VII)
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2000

4 Manage 60  
charging infrastructures
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Example (VII)



■ Coalitions on pricing strategies 

• Measures like limitations on the allowed market share of a single coalition 
(antitrust) demonstrate to be a mean to keep prices under control 

• Access costs as a function of the sold energy volume allow to avoid the 
formation of monopoly
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Outline

• Model Predictive Control 

• Distributed Model Predictive Control  

• Coalitional Model Predictive Control 

• Conclusions
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• Model Predictive Control is a powerful and versatile framework  
i. Mature control method with many theoretical results 
ii. It largely benefits from the advances on ICT 
iii. Promising application to cyber-physical systems 

• Distributed MPC is powerful but… 
i. Schemes have been developed naively 
ii. There is a need for cyber-security  
iii.  Deep implications regarding theoretical properties 

• Future points to flexible and resilient architectures 
i. Misbehaving agents have to be identified 
ii. Control architecture must be adapted in real time 
iii. Coalitional control offers an opportunity 

• Current work: flexible/coalitional MPC schemes that deal with noncompliant agents
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Conclusions
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Thank you!

Questions, suggestions, comments?  

pepemaestre@us.es 

pepemaestre.net
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